Orbit-counting polynomials for graphs and codes

نویسندگان

  • Peter J. Cameron
  • Bill Jackson
  • Jason D. Rudd
چکیده

We construct an “orbital Tutte polynomial” associated with a dual pair M and M∗ of matrices over a principal ideal domain R and a group G of automorphisms of the row spaces of the matrices. The polynomial has two sequences of variables, each sequence indexed by associate classes of elements of R. In the case where M is the signed vertex-edge incidence matrix of a graph Γ over the ring of integers, the orbital Tutte polynomial specialises to count orbits of G on proper colourings of Γ or on nowhere-zero flows or tensions on Γ with values in an abelian group A. (In the case of flows, for example, we must substitute for the variable xi the number of solutions of the equation ia = 0 in the group A. In particular, unlike the case of counting nowhere-zero flows, the answer depends on the structure of A, not just on its order.) In the case where M is the generator matrix of a linear code over GF(q), the orbital Tutte polynomial specialises to count orbits of G on words of given weight in C or its dual.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interlace Polynomials: Enumeration, Unimodality, and Connections to Codes

The interlace polynomial q was introduced by Arratia, Bollobás, and Sorkin. It encodes many properties of the orbit of a graph under edge local complementation (ELC). The interlace polynomial Q, introduced by Aigner and van der Holst, similarly contains information about the orbit of a graph under local complementation (LC). We have previously classified LC and ELC orbits, and now give an enume...

متن کامل

Use of Structure Codes (Counts) for Computing Topological Indices of Carbon Nanotubes: Sadhana (Sd) Index of Phenylenes and its Hexagonal Squeezes

Structural codes vis-a-vis structural counts, like polynomials of a molecular graph, are important in computing graph-theoretical descriptors which are commonly known as topological indices. These indices are most important for characterizing carbon nanotubes (CNTs). In this paper we have computed Sadhana index (Sd) for phenylenes and their hexagonal squeezes using structural codes (counts). Sa...

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs

In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...

متن کامل

Cyclic Orbit Codes with the Normalizer of a Singer Subgroup

An algebraic construction for constant dimension subspace codes is called orbit code. It arises as the orbits under the action of a subgroup of the general linear group on subspaces in an ambient space. In particular orbit codes of a Singer subgroup of the general linear group has investigated recently. In this paper, we consider the normalizer of a Singer subgroup of the general linear group a...

متن کامل

Torus Orbits on Homogeneous Varieties and Kac Polynomials of Quivers

In this paper we prove that the counting polynomials of certain torus orbits in products of partial flag varieties coincides with the Kac polynomials of supernova quivers, which arise in the study of the moduli spaces of certain irregular meromorphic connections on trivial bundles over the projective line. We also prove that these polynomials can be expressed as a specialization of Tutte polyno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008